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Abstract The Fourier series can be used to describe periodic phenomena such as the
one-dimensional crystal wave function. By the trigonometric treatements in Hückel
theory it is shown that Hückel theory is a special case of Fourier series theory. Thus,
the conjugated π system is in fact a periodic system. Therefore, it can be explained
why such a simple theorem as Hückel theory can be so powerful in organic chemis-
try. Although it only considers the immediate neighboring interactions, it implicitly
takes account of the periodicity in the complete picture where all the interactions are
considered. Furthermore, the success of the trigonometric methods in Hückel theory
is not accidental, as it based on the fact that Hückel theory is a specific example of the
more general method of Fourier series expansion. It is also important for education
purposes to expand a specific approach such as Hückel theory into a more general
method such as Fourier series expansion.

Keywords Periodicity · Conjugated π system · Crystal wave function ·
Symmetric and anti-symmetric function · Chemical education

1 Introduction

Hückel theory [1,2] plays an important role in theoretical organic chemistry. The con-
cepts involved in Hückel theory have been connected with valence bond theories [3]
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and configuration interaction [4,5]. Several different methods, some involving trigo-
nometric functions [6–8], have been used to simplify the mathematical treatments in
Hückel theory and in particular solve wave-functions [9]. In this paper we will show
that the trigonometric methods used in Hückel theory [10,11] can be incorporated
into the more general principles of Fourier series expansion which is predominantly
used in many fields to describe period phenomena. The connection with energy band
theory for crystals is also considered here. The connection between Hückel theory and
Fourier series theory has not been pointed out explicitly previously to our knowledge.

2 General solutions

The method of Fourier series is a general method that is applicable to period phenom-
ena. Examples include the electron density in a crystal [12] and a one-dimensional
crystal wave function with periodicity a as shown in Eq. 1 [13].

�(x) =
N∑

j=1

k j
1√
L

e
i
(

j 2π
a x

)

(1)

where L is the cell length in the crystal containing N atoms. kj is a constant. In the
linear combination of atomic orbitals to crystal orbital (LCAO-CO) or tight-bonding
approximation, the symmetry adapted [15,16] crystal orbital can be represented in
Fourier series form [14,17] where every atom contributes a py orbital. The molecular
orbital of a conjugated system with N atoms is a linear combination of atomic orbitals
as shown in Eq. 2a.

ψ(R) = 1√∑N
j=1 c2

j

N∑

j=1

c jφpy (R − ja) = 1√∑N
j=1 c2

j

N∑

j=1

c jφpy

(
r j
)

(2a)

c j is the j’th expanding coefficient. φpy (r j ) is the atomic orbital located on atom j of
the coordinate system. This equation can be simplified from three dimensions to one
to give Eq. 2b

�(x) = 1√∑N
j=1 c2

j

N∑

j=1

c jφpy (x − ja) (2b)

Figure 1 shows a one-dimensional crystal with a periodicity represented by vector
a. The length of a is denoted by a in Eq. 2b. The conjugated system can also be
considered as a limited periodic system with the value of j ranging from 1 to N.

We can equate the one-dimensional crystal wave function of periodicity a as shown
in Eq. 1 with the molecular orbital of an N-atom conjugated system as shown in Eq. 2b
and demonstrate that they represent mutually inverse Fourier series by proving Eqs.
3a and 3b.
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Fig. 1 One dimensional crystal with translation vector a. Vectors are indicated in bold. The atoms are
located at the points labeled by integers. The periodic vector a connects adjacent atoms. The atomic wave-
function φpy(r − ja) is translated from the function φpy (r) at atom 0. The trigonometric functions labeled
near the atom sites are the coefficients cj in the Fourier series expansion. The derivation of these coefficients
is given in the main text

k j = φpy (x − ja) (3a)

c j = e
i
(

j 2π
a x

)

(3b)

In fact taking into account the concept of symmetry adapted orbitals, Eq. 1 can be
written as

�(x) =
N∑

j=1

ei( j−1) 2π
N φpyt (r j )

for conjugated systems [16].

2.1 Proof 1: Eqs. 1 and 2b are mutually inverse Fourier series

Here it is demonstrated that Eqs. 1 and 2b represent mutually inverse Fourier series.
Equations 4–7 are the secular equations of Hückel theory.

c1 (α − E)+ c2β = 0 (4)

c1β + c2 (α − E)+ c3β = 0 (5)

. . .

c j−1β + c j (α − E)+ c j+1β = 0 (6)

. . .

cN−1 (α − E)+ cNβ = 0 (7)

where α is the Coulomb integral, β is the exchange integral for adjacent atoms. If

c j = ei( jθ) = e
i
(

j 2π
a x

)

; where θ = 2π

a
x (8)
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then Eq. 9 is satisfied from Eq. 6.

ei( jθ)
[
βe−iθ + (α − E)+ βeiθ

]
= 0 (9)

From Eq. 9 we can obtain Eq. 10 which correlates the energy E with θ .

− y = α − E

β
= −

[
eiθ + e−iθ

]
= −2 cos θ (10)

If Eq. 8 is the solution of the secular equations, then Eq. 11 is also valid.

c j = e− jθ i (11)

e−i( jθ)
[
βe−iθ + (α − E)+ βeiθ

]
= 0 (12)

Equations 8 and 11 give two specific solutions to the secular equations and the general
solution should be Eq. 13 which can be proved from Eq. 14.

c j = Aei( jθ) + Be−i( jθ) = (A + B) cos( jθ)+ i(A − B) sin( jθ) = c sin ( jθ + ω)

where c = 1√
(A + B)2 + (A − B)2

and sinω = (A + B)c (13)

A and B in Eq. 13 represent arbitrary numbers for the general solution but they can
be determined from the appropriate boundary conditions for specific cases.

Aei( jθ)
[
βe−iθ + (α − E)+ βeiθ

]
+ Be−i( jθ)

[
βe−iθ + (α − E)+ βeiθ

]
= 0

(14)

The Laplace transformation is a well-known method which can be used to solve
differential equations [18]. Boundary conditions are particularly important in such
calculations and those for a conjugated straight chain polyene with N atoms in the
secular equations of Hückel theory are given in Eq. 15.

c0 = 0; and cN+1 = 0 (15)

By normalizing the wave function and inserting the boundary conditions given in
Eq. 15 into Eq. 13 we can obtain the solutions for the secular equations of Hückel
theory which will provide values of θ and the constants A and B (or c and ω). From
c0 = 0 which terminates the wave function from the left, we obtain that ω = 0 via
Eq. 13 for the conjugated straight chain polyene and from cN+1 = 0 which terminates
the wave function from the right, we obtain Eq. 16.

θ = mπ

N + 1
; m = 1, 2, . . . , N (16)
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An empty orbital is obtained for m = 0. When the value of m is greater than N, then
m is taken as mod(m, N) since the results for the wave-function and its energy will
repeat from those for m = 0, 1, …, N. So, only N independent orbitals are obtained.
The above results reduce Eqs. 1 and 2b to Eq. 17.

ψ(R) =
√

2

N+1

[
sin θ · φpy (R − a)+ sin 2θ · φpy (R − 2a)

+ · · · + sin Nθ · φpy (R − Na)
]

(17)

=
√

2

N+1

N∑

j=1

[
sin jθ · φpy (R − ja)

]

The coefficients in Eq. 17 where cj = aj sin(jθ ) are illustrated in Fig. 1 where all the
aj are equal to a1. A derivation of the normalizing constants a1 in Eq. 18 is given in
“Appendix 2”.

a1 =
√

2

N + 1
(18)

Now let us consider cyclic conjugated polyenes. Only the first and the last equations
(Eqs. 4 and 7) in the secular equations of Hückel theory will be different from those
which were used for the straight chain polyenes. The boundary conditions for cyclic
conjugated polyenes are given in Eq. 19.

c0 = cN (19)

By inserting Eq. 19 into Eq. 13 we obtain Eq. 20.

cN = c sin (Nθ + ω) = c sinω = c0 (20)

From Eq. 20, we obtain

Nθ + ω = ω + 2mπ; θ = 2mπ

N
; m = 0, 1, 2, . . . , N − 1 (21)

Equation 21 can also be obtained from other methods such as cyclic symmetry oper-
ations [15] as shown in “Appendix 1”.

Other methods leading to Eqs. 16 and 21 are given in “Appendix 1”. By inserting
Eq. 21 into Eq. 10, the expression of the orbital energy for a cyclic conjugated polyene
is obtained (Eq. 22).

E = α + 2β cos θ = α + 2β cos
2mπ

N
(22)

A diagrammetric representation of orbital energy for a cyclic conjugated polyene is
presented in Fig. 2. Together with Eqs. 10, 16, 21 and A1, it provides a way to calculate
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Fig. 2 Pictorial representation of the orbital energy for cyclic conjugated polyene using Eq. 21 with a
regular polygonal of N = 5 inside a circle of appropriate radius 2β, noting that E = α + 2β cos θ

cos[mπ /(N + 1)] or cos(2mπ /N). Other ways to calculate cos[mπ /(N + 1)] which are
relevant for obtaining orbital energy are given in “Appendix 4”.

Similarly to Eq. 16, Eq. 21 signifies that there are N molecular orbitals in a cyclic
conjugated polyene of N atoms. In the example shown in Fig. 2, N = 5. The trigono-
metric identity Eq. 23 can be applied to Eq. 20 to give Eq. 24.

sinω = sin (π − ω) (23)

cN = c sinω = c0 = c sin(π − ω) (24)

This leads to Eqs. 25 and 26 which are derived in “Appendix 5”.

sin( jθ + ω) = sin[ jθ + (π − ω)] (25)

cN+ j = c sin(π − ω + jθ) = c sin( jθ + ω) = c j (26)

When j = 0, Eq. 25 becomes equivalent to Eq. 23. In order to insure that Eq. 25 is true
for any value of j, Eq. 27 must be satisfied.

jθ + ω = jθ + (π − ω) ; ω = π

2
(27)

Hence in a cyclic conjugated system

c j = c sin
(

jθ + π

2

)
= c cos jθ = c cos

2 jmπ

N
(28)

Therefore using Eq. 16, we have obtained Eq. 17 from Eqs. 13 and 15 for the N molec-
ular orbitals of an open chain conjugated polyene and Eq. 28 from Eqs. 13 and 25 for
a cyclic conjugated polyene. The energies of the orbitals can be obtained from Eq. 10
via Eq. 16 or 21. It is thus clear that Eqs. 3a and 3b are valid since the necessary
values of θ have been obtained. Therefore, Eqs. 1 and 2b form an inverse Fourier
series relationship. The coefficients cj for the open chain polyene of N atoms have
been calculated from Eqs. 13 and 17 where ω = 0 and the values of θ are taken from
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Eq. 16. The coefficients of cj are shown in Fig. 1. Another form of Eq. 2b is shown as
Eq. 29.

�k(x) = c1φpy (x − a)+ c2φpy (x − 2a)+ · · · + cNφpy (x − Na)

=
N∑

j=1

c jφpy (x − ja)

=
N∑

j=1

a j sin( jθ) · φpy (x − ja)+
N∑

j=1

b j cos( jθ) · φpy (x − ja) (29)

With Eq. 6 and the boundary conditions given in Eq. 15 for straight chain polyenes,
we can prove that all aj are equal and all bj are equal to 0 for j = 1 to N, and that the
coefficients which are shown in Fig. 1 can be calculated.

3 General solutions for a conjugated straight chain polyene

3.1 Proof 2: proof of Eq. 29 where bj = 0 for a conjugated straight chain polyene

Here we show that Eq. 29 is another form of Eq. 2b for a conjugated straight chain
polyene. From Eqs. 6 and 10, we obtain Eq. 30 as shown below. From Eq. 6 we obtain

c j−1 + c j
α − E

β
+ c j+1 = 0

Substituting Eq. 10, where y = 2 cos θ , we obtain

c j−1 + c j+1 = c j
E − α

β
= yc j = 2c j cos θ

or

c j−1 + c j+1 = 2 cos θ · c j (30)

If a central atom j in a conjugated system is bonded to a third atom x, then Eq. 30 can
be expanded to Eq. 31 in which the sum of the coefficients of the atoms connected to
the central atom will equal the coefficient of the central atom times 2 cos θ .

cj−1 + cj+1 + cx = 2cj cos θ (31)

and this is illustrated in Fig. 3.
In the example shown in Fig. 3, Eq. 6 can be expanded to give

c j−1β + cxβ + c j (α − E)+ c j+1β = 0 (32)

c j−1 + cx + c j+1 = c j
E − α

β
= 2c j cos θ (33)
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Fig. 3 A graphical
representation of 3 carbon atoms
attached to a central carbon
atom j

Equations 30 and 33 can be used to calculate all the coefficients in Eq. 29 by trigno-
metrical identity [19]. i. e. setting j = 1, given that c0 = 0 and c1 = a1 sin θ, c2 can be
obtained from Eq. 34.

0 + c2 = 2 cos θ · a1 sin θ = a1 sin(2θ) (34)

In general terms, then we can obtain all coefficients cj+1 from Eq. 35 which is derived
from Eq. 30.

a1 sin [( j − 1) θ ] +c j+1 = 2 cos θ · a1 sin ( jθ) = a1 sin (θ+ jθ)− a1 sin (θ − jθ)

c j+1 = a1 sin [( j+1) θ ] (35)

The results obtained from Eq. 35 are shown in Fig. 1. Using the boundary condition
cN+1 = 0, θ can be determined in the same manner that Eq. 16 is obtained. Similarly,
an empty function is given when m = 0. Thus, all the bj should be 0.

There are always the same number of symmetry and anti-symmetry orbitals with
respect to mirror or two fold rotation symmetry operations in Hückel theory. Similarly
there are odd and even expansions of Fourier series which are expressed in terms of
sines and cosines, respectively. This property can be used to simplify the treatment
further as discussed in the following sections. More examples will be provided in
“Appendix 3”.

4 Symmetric and anti-symmetric wave functions for conjugated straight chain
polyenes when N is even

The coefficients of the symmetric and the anti-symmetric wave function can be cal-
culated from the centre, marked as 0, in Fig. 4 when N is even. Thus, the angle in the
coefficients for the two atoms making up the central bond is θ /2. From Eq. 6 we can
obtain the coefficients for both the odd and even functions. The coefficients obtained
from Eqs. 36 and 37 are shown in Fig. 4. When N is odd the same derivation applies
and the results are shown in Fig. 5.

− sin
θ

2
+ c3/2 = 2 cos θ · sin

θ

2
= sin

(
θ + θ

2

)
− sin

(
θ − θ

2

)
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Fig. 4 A representation of a conjugated straight chain polyene where N is even. The coefficients for
the odd and even functions are also shown with the angle form of ±[(1/2) + 0]θ,±[(1/2) + 1]θ,
±[(1/2)+ 2]θ,±[(1/2)+ 3]θ, . . . ,±[(1/2)+ j]θ, . . .± {(1/2)+ [(N/2)− 1]}θ

Fig. 5 A representation of a conjugated straight chain polyene where N is odd. The coefficients for the
odd and even function are derived from Eq. 30 and shown with the angle form of 0 = [N − (N −
0)/2]θ,±1θ = ±{[N − (N − 2)]/2}θ;±2θ = ±{[N − (N − 4)]/2}θ; . . . ;± jθ = ±{[N − (N −
2 j)]/2}θ; . . . ; ±[(N −5)/2]θ = ±θ{N −[N −(N −5)]}/2; ±[(N −3)/2]θ=±θ{N −[N −(N −3)]}/2;
±[(N −1)/2]θ = ±θ{N −[N −(N −1)]}/2. Notice that N −3 in [N −(N −3)] or N −1 in [N −(N −1)]
is an even number accounted for 2 j

= sin

(
3θ

2

)
− sin

(
θ

2

)
; c3/2 = sin

(
3θ

2

)
(36)

cos
2 j − 3

2
θ + c( j+1)/2 = 2 cos θ · cos

2 j − 1

2
θ = cos

(
θ + 2 j − 1

2
θ

)

+ cos

(
θ − 2 j − 1

2
θ

)
= cos

(
2 j + 1

2
θ

)
+ cos

(
2 j − 3

2
θ

)
;

c( j+1)/2 = cos

(
2 j + 1

2
θ

)
(37)

The boundary conditions are represented by Eqs. 38 and 39 for the even and odd
functions, respectively.

c N+1
2

= cos

(
N + 1

2
θ

)
= 0; θ = 2m + 1

N + 1
π; m = 0, 1, 2, . . . , <

N

2
(38)

c N+1
2

= sin

(
N + 1

2
θ

)
= 0; θ = 2mπ

N + 1
; m = 1, 2, . . . ,

N

2
(39)

Equations 38 and 39 give N molecular orbitals.

5 Symmetric and anti-symmetric wave functions for conjugated straight chain
polyenes when N is odd

The boundary conditions for the even and odd functions respectively are given in
Eqs. 40 and 41 when N is odd.
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c N+1
2

= cos

(
N + 1

2
θ

)
= 0; θ = 2m + 1

N + 1
π; m = 0, 1, 2, . . . ,

N − 1

2
(40)

c N+1
2

= sin

(
N + 1

2
θ

)
= 0; θ = 2mπ

N + 1
; m = 1, 2, . . . ,

N − 1

2
(41)

The coefficients of the symmetric and the anti-symmetric wave function can be cal-
culated from the θ valuues of Eqs. 40 and 41. There are N molecular orbitals and the
coeffecients are shown in Fig. 5.

6 Conclusions

The simple Hückel theory is useful in theoretical organic chemistry. The trigono-
metric basis of this theory is a very powerful mathematical method. However, the
trigonometric treatment seems an isolated case not applicable to other systems.
In this paper, however, a significant correlation between Fourier series expansion
and Hückel orbital theory is shown by the trigonometric treatments. The corre-
lation is interesting since the form of Hückel orbital theory looks very different
from that of Fourier series expansion. The universal success of Huckel theory in
explaining the properties of conjugated organic molecules can thus be attributed
to its sound theoretical basis which is related to Fourier series expansion, a gen-
erally accepted theory in many fields for periodic phenomena. In fact, an active
research strategy is often obtained by connecting different concepts or methodologies
[20–23].
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Appendices

The appendices that are included here provide background information for chemists
who are not familiar with the mathematics involved. Different methods are provided
to show that the success of Hückel theory is not accidental. Some of the derivations
presented here are original; others are based on the given references. Equations not in
the main text but introduced here are denoted with an A prefix.

Appendix 1: Other methods of obtaining Eqs. 16 and 21

Method 1

The secular equations for a conjugated straight chain polyene is given by Eq. A1.
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gn(y) =

∣∣∣∣∣∣∣∣∣∣

y −1 0 . . . 0
−1 y −1 . . . 0
0 . . . . . . . . . 0
. . . . . . −1 y −1
0 . . . 0 −1 y

∣∣∣∣∣∣∣∣∣∣

= 0 (A1)

From Eq. A1, Eq. A2 can be obtained.

gn(y) = ygn−1(y)− gn−2(y) = 0 (A2)

From Eqs. A1 and A2, Eqs. A3–A8 are obtained.

g0(y) = 1 (A3)

g1(y) = y (A4)

g2(y) = y2 − 1 (A5)

g3(y) = y3 − 2y (A6)

g4(y) = y4 − 3y2 + 1 = (−1)0
(4 − 0)!

0! (4 − 2 · 0)! y4−2·0

+ (−1)1
(4 − 1)!

1! (4 − 2 · 1)! y4−2·1 + (−1)2
(4 − 2)!

2! (4 − 2 · 2)! y4−2·2 (A7)

. . .

gN (y) = (−1)0
(N − 0)!

0! (N − 2 · 0)! yN−2·0 + (−1)1
(N − 1)!

1! (N − 2 · 1)! yN−2·1

+ · · · + (−1) j (N − j)!
j ! (N − 2 · j)! yN−2· j =

∑

j

(−1) j (N − j)!
j ! (N − 2 · j)! yN−2· j

(A8)

When N is even, j≤N/2 for Eq. A8. When N is odd, j ≤ (N − 1)/2. We can obtain a
general formulae for gn(y) as follows. Starting from the identity Eq. A9 where a = yz
and b = z2.

∞∑

N=0

N∑

j=0

(a − b)N =
∞∑

N=0

N∑

j=0

(yz − z2)N =
∞∑

N=0

N∑

j=0

(−1) j C j
N (yz)N− j z2 j

=
∞∑

N=0

j≤N/2∑

j=0

(−1) j C j
N− j (yz)N− j− j z2 j

=
∞∑

N=0

⎡

⎣

⎛

⎝
j≤N/2∑

j=0

(−1) j C j
N− j yN−2 j

⎞

⎠ zN

⎤

⎦ (A9)
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In Eq. A9, all terms with the same power of z are combined. Since

∞∑

N=0

(yz − z2)N = 1 + (yz − z2)+ (yz − z2)2 + · · · + (yz − z2)N

= 1

1 − (yz − z2)
(A10)

yz − z2 < 1. By comparing the coefficients of zN in Eq. A9 with those in Eq. A8, it
can be seen that gn(y) represents the coefficient of zN in Eq. A9. Thus, Eq. A11 can
be readily obtained from Eqs. A8 to A10.

∑

N

gN (y)z
N =

∑

N

N/2∑

j=0

(−1) j (N − j)!
j ! (N − 2 · j)! yN−2· j zN

=
∑

N

N/2∑

j=0

(−1) j C j
N− j yN−2· j zN =

(
1 − yz + z2

)−1
(A11)

Using the definition specified in Eq. 10 we obtain Eq. A12.

(
1 − yz + z2

)−1 = (1 − 2z cos θ + z2)−1 = [1 − z
(

eiθ + e−iθ
)

+ zeiθ ze−iθ ]−1

=
[(

1 − ze−iθ
)

− zeiθ
(

1 − ze−iθ
)]−1 = 1

(1 − zeiθ )(1 − ze−iθ )

=
(
eiθ − e−iθ

)− zeiθe−iθ + zeiθe−iθ

2i sin θ(1 − zeiθ )(1 − ze−iθ )

= eiθ
(
1 − ze−iθ

)− e−iθ (1 − zeiθ )

2i sin θ(1 − zeiθ )(1 − ze−iθ )

= (2i sin θ)−1
(

eiθ

1 − zeiθ
− e−iθ

1 − ze−iθ

)

= (2i sin θ)−1
[
eiθ
(

1 + zeiθ + · · · + zN ei Nθ
)

−e−iθ
(

1 + ze−iθ + · · · + zN e−i Nθ
)]

= (2i sin θ)−1
∑

N

zN
(

ei(N+1)θ − e−i(N+1)θ
)

=
∑

N

sin(N + 1)θ

sin θ
zN (A12)

Thus, Eq. A13 is obtained from Eq. A11 via Eq. A12.

gN (y) = sin(N + 1)θ

sin θ
(A13)
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Equation 16 is thus obtained from Eq. A13 by the requirement of Eq. A1. The poly-
nomial for the secular equations pertaining to a cyclic conjugated polyene is given as
Eq. A14.

Pn(y) = ygn−1(y)− 2gn−2(y)− 2 = gn(y)− gn−2(y)− 2 (A14)

Equation A15 is obtained by inserting Eq. A13 into Eq. A14.

Pn(y) = 1

sinθ
[sin(N + 1)θ − sin(N − 1)θ ] − 2 = 2 (cos Nθ − 1) (A15)

Equation 21 can thus be obtained from Eq. A15.

Method 2

From mathematical induction it is easy to prove

G N =

∣∣∣∣∣∣∣∣∣∣

a + b ab 0 . . . 0
1 a + b ab . . . 0
0 . . . . . . . . . 0
. . . . . . 1 a + b ab
0 . . . 0 1 a + b

∣∣∣∣∣∣∣∣∣∣

= aN+1 − bN+1

a − b
(A16)

The validity of the relationship can be easily seen for small values of N such as 2
or 3. Using Eq. A2 we can prove that Eq. A17 is valid. i.e. if the relationship is valid
for order N, then expanding the determinant for order N + 1, we obtain

GN+1 = (a + b)GN − abGN−1 = (a + b)
aN+1 − bN+1

a − b
− ab

aN − bN

a − b

= a(N+1)+1 − b(N+1)+1

a − b
(A17)

Let

a = −eiθ ; and b = −e−iθ (A18)

then

a + b = −2 cos θ; and ab = 1 (A19)
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From Eq. A1 we have

gN (y) =

∣∣∣∣∣∣∣∣∣∣

y −1 0 . . . 0
−1 y −1 . . . 0
0 . . . . . . . . . 0
. . . . . . −1 y −1
0 . . . 0 −1 y

∣∣∣∣∣∣∣∣∣∣

= (−1)N

∣∣∣∣∣∣∣∣∣∣

−2 cos θ 1 0 . . . 0
1 −2 cos θ 1 . . . 0
0 . . . . . . . . . 0
. . . . . . 1 −2 cos θ 1
0 . . . 0 1 −2 cos θ

∣∣∣∣∣∣∣∣∣∣

= (−1)N (−1)N+1[ei(N+1)θ − e−i(N+1)θ ]
−(eiθ − e−iθ )

= 2i sin(N + 1)θ

2i sin θ
(A20)

The result obtained from Eq. A20 is the same as that from Eq. A13.

Method 3: The proof of Eq. 21 following ref. [15]

Equation 2a for a system with cyclic symmetry can be written as

ψ =
N∑

j=1

c jφpy

(
r j
) =

N∑

j=1

c j+nφpy

(
r j+n

); modulo N (A21)

The cyclic group CN with elements

{Cn
N ; n = 1, 2, . . . , N } (A22)

has only one-dimensional irreducible representations with the characters

χ(Cn
N ) = e2π imn/N (A23)

By definition

Cn
Nφpy

(
r j
) = φpy

(
r j+n

) ; modulo N (A24)

and

Cn
Nψ = e2π imn/Nψ (A25)

Since

e2π imn/Nψ = e2π imn/N
N∑

j=1

c jφpy

(
r j
) = e2π imn/N

N∑

j=1

c j+nφpy

(
r j+n

)
(A26)
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The Cn
N operator in Eq. A25 will affect the φpy

(
r j
)

function in Eq. A21 but not
the constants c j . Thus from Eq. A25 we obtain Eq. A27.

Cn
Nψ =

N∑

j=1

c j C
n
Nφpy

(
r j
) =

N∑

j=1

c jφpy

(
r j+n

)
(A27)

From Eqs. A27, A25, and A26 we obtain Eq. A28.

N∑

j=1

c jφpy

(
r j+n

) = e2π imn/N
N∑

j=1

c j+nφpy

(
r j+n

)
(A28)

Equation A28 implies that

c j = e2π imn/N c j+n; or

e−2π imn/N c j = c j+n (A29)

Using Eq. 30 we therefore obtain

c j e
2π im/N − c j y + c j e

−2π im/N = 0 (A30)

y = e2π im/N + e−2π im/N = 2 cos
2mπ

N
(A31)

The result of Eq. A31 is consistent with that of Eq. 21.

Appendix 2: The derivation of Eq. 18 to give the normalizing constants

The normalizing constant shown in Eq. 18 is derived as follows.

Method 1

⎛

⎝
N∑

j=1

sin2 jθ

⎞

⎠
−1/2

=
⎛

⎝
N∑

j=1

1 − cos 2 jθ

2

⎞

⎠
−1/2

=
⎛

⎝N

2
− 1

2

N∑

j=1

cos 2 jθ

⎞

⎠
−1/2

(A32)

If we can prove Eq. A33.

N∑

j=1

cos 2 jθ = − cos 0 = −1 (A33)
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Fig. 6 The N + 1 vectors r0, r1, r2, …, rN divide the circle equally and they can form a regular polygon
OABC…Z, shown as a dotted line with N + 1 sides. The radius of the circle in the figure is set at unity
for simplicity thus rj represents a unit vector. Every vector is rotated by an angle of 2π /(N + 1) from the
previous vector. The N + 1 vectors rotate through an angle of 2π thus forming the closed N + 1 regular
polygon OABC…Z

Then Eq. 18 is obtained as Eq. A34.

a1 =
⎛

⎝
N∑

j=1

sin2 jθ

⎞

⎠
−1/2

=
(

N

2
− −1

2

)−1/2

=
√

2

N + 1
(A34)

Now we need to prove Eq. A33 and the proof can be based on Fig. 6. As shown
in Fig. 6, r0, r1,r2, …, and rN form a closed polygon with N + 1 sides so that as a
consequence the sum of all the vectors is zero. If the unit vectors are expressed in
complex form Eq. A35 is obtained.

N∑

j=0

r j =
N∑

j=0

(
cos

j2π

N + 1
+ i sin

j2π

N + 1

)
=

N∑

j=0

(cos jθ + i sin jθ) = 0 (A35)

Equation A35 signifies that the sum of the real and the imaginary parts should both
equal 0. We will ignore the imaginary parts of A35. For the real components, we obtain
Eq. A36.
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N∑

j=0

cos jθ =
N∑

j=0

cos j
2π

N + 1
= 1 +

N∑

j=1

cos j
2π

N + 1
= 1 +

N∑

j=1

cos jθ = 0 (A36)

Equations A36 and A33 are very similar except that the former is in angle units of θ
while the latter is in angle units of 2θ . Thus we need to prove Eq. A37 since Eq. A33
can readily be obtained from the real part of Eq. A37.

N∑

j=0

r2 j =
N∑

j=0

(cos 2 jθ + i sin 2 jθ) =
N∑

j=0

(
cos

2 j2π

N + 1
+ i sin

2 j2π

N + 1

)

= 1 +
N∑

j=1

(cos 2 jθ + i sin 2 jθ) = 0 (A37)

We need to prove Eq. A37 for the two possibilities, where N + 1 is odd or even, respec-
tively.

First, when N + 1 is odd: If we pick (N + 1) times every alternate vector from r0,
r1, r2, …, rN in a circular way in Eq. A37, then Eq. A37 reduces to Eq. A35 since
all the N + 1 vectors appear once and only once in the summation of Eq. A37. Taking
N + 1 = 5 as an example, there will be 5 vectors, namely r0, r1, r2, r3, r4 then if we
select alternate vectors from the list returning to the start after the final r4, then on
including all vectors once, we obtain Eq. A38.

4∑

i=0

r2i =
4∑

j=0

(cos 2 jθ + i sin 2 jθ) = r0 + r2 + r4 + r6(= r1)+ r8(= r3)

= r0 + r1 + r2 + r3 + r4 =
4∑

i=0

ri = 0 (A38)

The real components in Eq. A37 can be simplified as below, thus proving Eq. A33
when N + 1 is odd.

N∑

j=0

cos 2 jθ = cos 0 +
N∑

j=1

cos 2 jθ = 1 +
N∑

j=1

cos 2 jθ = 0

N + 1 is even: If we select N + 1 alternate vectors from r0, r1, r2, …, rN in a circular
way and sum them, we would sum half of the vectors rx (x = even) twice and ignore
the rest with x = odd. For example, if there are six vectors in the list r0, r1, r2, r3, r4,
r5, we have Eq. A39.
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5∑

i=0

r2i =
5∑

j=0

(cos 2 jθ+i sin 2 jθ) = r0 + r2 + r4+r6(= r0)+r8(= r2)+r10(= r4)

= 2(r0 + r2 + r4) = r0 +
5∑

i=1

r2i = 0 (A39)

There will be a N/2 regular polygon inside the N + 1 regular polygon if N + 1 is even.
Eqs. A35 and A39 are valid irrespective of the value of the length of the vectors when
all the vectors are with the same length. So we have proved above that Eq. A37 is
valid independent of whether N + 1 is odd or even. By using Eqs. A37, A32, and A33,
Eq. A34 which gives the values of the normalizing constants can be easily obtained.

Method 2

The derivation of Eq. A18 for the normalizing constants a1 is obtained from Eq. A41.
Eq. A41 is obtained by using Eq. A401

N∑

j=1

2 cos 2 jθ

2
=

N∑

j=1

e2i( jθ) + e−2i( jθ)

2

= −1

2
+ 1

2

N∑

j=−N

e2i( jθ) = −1

2
+ 1

2

e−2i(Nθ) − ei(2N+2)θ

1 − e2iθ

1 Eq. A40 can also be derived from the following

sin(2 j + 1)θ − sin(2 j − 1)θ = 2 sin θ cos 2 jθ

N∑

j=−N

e2i jθ = 1 +
N∑

j=1

(
e2i jθ + e−2i jθ ) = 1 +

N∑

j=1

2 cos(2 jθ)

= 1 + 2 cos(2θ)+ 2 cos(4θ)+ . . .+ 2 cos(2Nθ)

= 1 + 1

sin θ

{[sin(3θ)− sin θ ] + [sin(5θ)− sin(3θ)] + . . .+ [sin((2N + 1)θ)− sin((2N − 1)θ)]}

= 1 + sin[(2N + 1)θ ] − sin θ

sin θ
= sin[(2N + 1)θ ]

sin θ

or more generally

N∑

j=1

[cos(2 jθ)+ i sin(2 jθ)] =
N∑

j=1

cos(2 jθ)+ i
N∑

j=1

sin(2 jθ) =
N∑

j=1

ei(2 jθ) = ei2θ (1 − ei2Nθ )

1 − ei2θ

= eiθ ei Nθ (e−i Nθ − ei Nθ )

e−iθ − eiθ
= {

cos[(N + 1)θ ] + i sin(N + 1)θ ]}−2i sin(Nθ)

−2i sin θ

= cos[(N + 1)θ ] sin(Nθ)

sin θ
+ i

sin[(N + 1)θ ] sin Nθ

sin θ

The real part of the above equation leads to Eq. A40.
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= −1

2
+ 1

2

e−i(2N+1)θ − ei(2N+1)θ

e−iθ − eiθ
= 1

2

sin(2N + 1)θ − sin θ

sin θ

= 1

2

2 cos(N + 1)θ sin Nθ

sin θ
(A40)

From Eq. A40, Eq. A41 is obtained.

⎛

⎝
N∑

j=1

sin2 jθ

⎞

⎠
−1/2

=
⎛

⎝
N∑

j=1

1 − cos 2 jθ

2

⎞

⎠
−1/2

=
⎛

⎝N

2
− 1

2

N∑

j=1

cos 2 jθ

⎞

⎠
−1/2

=
(

N

2
− cos(N + 1) mπ

N+1 sin N mπ
N+1

2 sin mπ
N+1

)−1/2

=
(

N

2
− cos mπ

sin Nmπ
N+1

2 sin mπ
N+1

)−1/2

=
(

N

2
+ (−1)m+1 sin(mπ − mπ

N+1 )

2 sin mπ
N+1

)−1/2

=
(

N

2
+ (−1)m+1 (−1)m+1

2

)−1/2

=
(

2

N + 1

)1/2

(A41)

Appendix 3: Applications

Application 1: Benzene

The strategy used in Sect. 4 for straight chain polyenes when N is even, can be used here
for benzene. Note that there are N atoms in a conjugated system though the calculation
of the normalizing constants in the straight chain polyene in method 1 of “Appendix 2”
involves N + 1 since r0 is included. The relevant coefficients are shown in Fig. 7a. The
boundary conditions are created by joining the two end atoms together [indicated by
a dotted line in Fig. 7a]. Using Eq. 30 and taking one of the terminal atoms as the
central atom we obtain Eq. A42 as the boundary conditions for the symmetric wave
function.

c−5/2 + c3/2 = 2 cos θ · c5/2

cos
5

2
θ + cos

3

2
θ = 2 cos θ · cos

5

2
θ = cos

(
5

2
θ + θ

)
+ cos

(
5

2
θ − θ

)
(A42)

Solving Eq. A42, we have

cos
7

2
θ − cos

5

2
θ = 0; −2 sin 3θ sin

1

2
θ = 0; θ = mπ

3
; m = 0, 1, 2 (A43)
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For the anti-symmetric function, Eq. A44 is given from the boundary condition from
one of the two terminal atoms in Fig. 7a. In Eq. A45, θ cannot be zero, or an empty
wave function results.

c3/2 + c−5/2 = 2 cos θ · c5/2

sin
3

2
θ − sin

5

2
θ = 2 cos θ · sin

5

2
θ = sin

(
5

2
θ + θ

)
+ sin

(
5

2
θ − θ

)
(A44)

Solving Eq. A44, we have

sin
7

2
θ + sin

5

2
θ = 0; 2 sin 3θ cos

1

2
θ = 0

θ = mπ

3
; m = 1, 2, 3 (A45)

The strategy used in Sect. 5 for a straight chain polyene when N is odd can alternatively
be used here for benzene. Benzene can be obtained by superimposing the first and last
atoms in Fig. 7b. The relevant coefficients are also shown there. The boundary con-
ditions are derived by taking the superimposed atoms as the central atom. The results
are shown from Eqs. A46–A50. In Eq. A50, θ cannot be 0, or a empty wave function
results. For symmetric orbitals, we have

C2 + C−2 = 2 cos θC3

cos 2θ + cos 2θ = 2 cos θ · cos 3θ (A46)

since

2 cos θ · cos 3θ = cos 4θ + cos 2θ (A47)

By combining Eqs. A46 and A47, we obtain

cos 4θ − cos 2θ = 0; −2 sin 3θ sin θ = 0;
θ = mπ

3
; m = 0, 1, 2, 3 (A48)

For anti-symmetric orbitals, we obtain

sin 2θ − sin 2θ = 2 cos θ · sin 3θ;
(A49)

sin 3θ = − sin 3θ; or c3 = −c−3;

Both equations shown in Eq. A49 lead to Eq. A50.

2 sin 3θ = 0; θ = mπ

3
; m = 1, 2, 3 (A50)
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The fact that the trigonometric treatment can be applicable in such a general way
indicates that the Hückel theory for conjugated π orbital systems is really rooted in
the more general theory of Fourier series expansion.

Application 2: Benzyl radical

For the symmetric wave function, the coefficient cx (Fig. 8) on the terminal carbon,
x, can be calculated from Eq. 33 as shown in Eq. A51

c2 + c−2 + cx = 2 cos θ · c3

cos 2θ + cos 2θ + cx = 2 cos θ cos 3θ

2 cos θ cos 3θ = cos 4θ + cos 2θ (A51)

Therefore

cx = cos 4θ − cos 2θ (A52)

And θ for the symmetric orbitals can be obtained from the boundary condition that
cx+1 = 0 and the derivation is given in Eqs. A53–A54 (Fig. 8).

2cx cos θ = cos 3θ + cx+1 (A53)

2 cos θ (cos 4θ − cos 2θ) = cos 3θ + 0 = cos(θ + 2θ)

2 cos θ
{

2[(2 cos2 θ − 1)2 − 1] − (2 cos2 θ − 1)
}

= cos θ(2 cos2 θ − 1)− 2(1 − cos2 θ) cos θ

cos θ(16 cos4 θ − 24 cos2 θ + 7) = 0

2 cos θ = 0,±
√
(3 ± √

2) (A54)

The other two anti-symmetric orbitals can be obtained easily using the boundary
condition sin 3θ = 0 or 2 cos θ · sin 2θ = sin θ + 0. This results in a total of seven
orbitals for symmetric and antisymmetric orbitals.

Application 3: Naphthalene

The orbitals of naphthalene can be sorted into four groups as (Sx, Sy), (Ax, Ay),
(Sx, Ay), and (Ax, Sy), which represent symmetric (S) or anti-symmetric (A) orbitals
about x and y axes as shown in Fig. 9. There are 10 orbitals in total. The boundary
conditions originate from either of the central atoms at position 9 or 10.

A guideline is provided as follows
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(a) (b)

Fig. 7 Coefficients for benzene from two different models of chain polyenes. As an acyclic system
N = 6 (a) and as an acyclic system N = 7 (b), respectively. Every atom provides an atomic orbital and
an electron

Fig. 8 Coefficients for benzyl radical. Every atom provides an atomic orbital and an electron

Derivation of (Sx,Sy)

For (Sx , Sy), the 2 cos θ values are obtained from the boundary conditions where atom
9 or 10 is taken as the middle atom. Using Eq. 33 with c5/2 + c3/2 + c3/2 = 2 cos θc5/2

2 cos
3

2
θ + cos

5

2
θ = 2 cos θ cos

5

2
θ = cos

7

2
θ + cos

3

2
θ

cos
7

2
θ − cos

5

2
θ = cos

3

2
θ (A55)

cos
3

2
θ = −2 sin 3θ sin

1

2
θ = −4 sin

3

2
θ cos

3

2
θ sin

1

2
θ

cos
3

2
θ

(
1 + 4 sin

3

2
θ sin

1

2
θ

)
= 0
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Fig. 9 Coefficients for naphthalene

cos
3

2
θ [1 + 2(cos θ − cos 2θ)] = 0 (A56)

Equation A56 requires the two factors to be zero. First

1 + 2(cos θ − cos 2θ) = 0

cos θ − 2 cos2 θ + 1 = −1

2(√
2 cos θ − 1

2
√

2

)2

= 13

8

2 cos θ = 1

2
(1 ± √

13) (A57)

second, Eq. A56 requires Eq. A58 to be met.

cos
3

2
θ = cos

(
θ + 1

2
θ

)
= 0 (A58)

cos
1

2
θ cos θ − sin

1

2
θ sin θ = 0

cos
1

2
θ

(
2 cos2 1

2
θ − 1

)
− 2 sin2 1

2
θ cos

1

2
θ = 0

4 cos3 1

2
θ − 3 cos

1

2
θ = cos

1

2
θ

(
4 cos2 1

2
θ − 3

)
= 0; cos2 1

2
θ = 3

4
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cos θ = 2 cos2 1

2
θ − 1 = 2 × 3

4
− 1 = 1

2
; 2 cos θ = 1 (A59)

An alternative derivation of (Sx,Sy)

From Eq. A55

cos

(
5

2
θ + θ

)
= cos

(
1

2
θ + θ

)
+ cos

(
3

2
θ + θ

)

cos
5

2
θ cos θ − sin

5

2
θ sin θ =

(
cos

1

2
θ cos θ − sin

1

2
θ sin θ

)

+
(

cos
3

2
θ cos θ − sin

3

2
θ sin θ

)

cos θ

(
cos

5

2
θ − cos

3

2
θ − cos

1

2
θ

)
= sin θ

(
sin

5

2
θ − sin

3

2
θ − sin

1

2
θ

)

cos θ

(
−2 sin 2θ sin

1

2
θ − cos

1

2
θ

)
= sin θ

(
2 cos 2θ sin

1

2
θ − sin

1

2
θ

)
(A60)

Taking the left hand side of Eq. A60, we obtain

(
2 cos2 1

2
θ − 1

)(
−8 sin2 1

2
θ cos

1

2
θ

(
2 cos2 1

2
θ − 1

)
− cos

1

2
θ

)

=
(

2 cos2 1

2
θ − 1

)(
−16 sin2 1

2
θ cos3 1

2
θ + 8 sin2 1

2
θ cos

1

2
θ − cos

1

2
θ

)

= −32 sin2 1

2
θ cos5 1

2
θ + 32 sin2 1

2
θ cos3 1

2
θ − 2 cos3 1

2
θ

−8 sin2 1

2
θ cos

1

2
θ − cos

1

2
θ

Taking the right hand side of Eq. A60, we obtain

2 sin
1

2
θ cos

1

2
θ

{
2

[
2

(
2 cos2 1

2
θ − 1

)2

− 1

]
sin

1

2
θ − sin

1

2
θ

}

= 2 sin
1

2
θ cos

1

2
θ

(
16 cos4 1

2
θ sin

1

2
θ − 16 cos2 1

2
θ sin

1

2
θ + sin

1

2
θ

)

= 32 cos5 1

2
θ sin2 1

2
θ − 16 cos3 1

2
θ sin2 1

2
θ + 2 cos

1

2
θ sin2 1

2
θ

Equating the two sides of Eq. A60, we obtain

64 cos6 1

2
θ − 128 cos4 1

2
θ + 72 cos3 1

2
θ − 9 = 0

cos
θ

2
=
√

1 + cos θ

2
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8(1 + cos θ)3 − 32(1 + cos θ)2 + 36(1 + cos θ)− 9 = 0

8 cos3 θ − 8 cos2 θ − 4 cos2 θ + 3 = 0

(2 cos θ − 1)
(

4 cos2 θ − 2 cos θ − 3
)

= 0

4 cos2 θ − 2 cos θ − 3 = 0 (A61)

These give the same results for θ as given in Eqs. A57 and A59.

Derivation of (Ax,Sy)

2 sin
3

2
θ − sin

5

2
θ = 2 cos θ sin

5

2
θ = sin

7

2
θ + sin

3

2
θ

sin
3

2
θ = sin

7

2
θ + sin

5

2
θ = 2 sin 3θ cos

1

2
θ = 4 sin

3

2
θ cos

3

2
θ cos

1

2
θ

sin
3

2
θ

(
1 − 4 cos

3

2
θ cos

1

2
θ

)
= 0

2(cos 2θ + cos θ)− 1 = 0

2(2 cos2 θ − 1)+ 2 cos θ − 1 = 0

2 cos θ = −1 ± √
13

2
(A62)

sin
3

2
θ = sin

(
1

2
θ + θ

)
= 0

sin θ cos
1

2
θ + cos θ sin

1

2
θ = 2 sin

1

2
θ cos2 1

2
θ +

(
2 cos2 1

2
θ − 1

)
sin

1

2
θ

= sin
1

2
θ

(
2 cos2 1

2
θ + 2 cos2 1

2
θ − 1

)
= 0

2(2 cos2 1

2
θ − 1)+ 1 = 0; 2 cos θ = −1 (A63)

Derivation of (Ax,Ay)

For (Ax, Ay), the 2 cos θ values are obtained from the boundary conditions with
Eq. A64.

sin
1

2
θ + 0 = 2 cos θ sin

3

2
θ = sin

5

2
θ + sin

1

2
θ

sin
5

2
θ = 0; θ = 2mπ

5
; m = 1, 2 (A64)
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Derivation of (Sx,Ay)

cos
1

2
θ + 0 = 2 cos θ cos

3

2
θ = cos

5

2
θ + cos

1

2
θ

cos
5

2
θ = 0; θ = (2m + 1)π

5
; m = 0, 1 (A65)

To calculate the energy of the orbitals, the value of 2 cos θ is required. The analytical
form of the relevant 2 cos θ where θ = π/5 is obtained in ‘Appendix 4”.

Appendix 4: Calculation of cos π
5

Method 1

cos
3π

5
= − cos

(
π − 3π

5

)
= − cos

2π

5
= −

(
2 cos2 π

5
− 1

)

cos
3π

5
= cos

(
2π

5
+ π

5

)
= cos

2π

5
cos

π

5
− sin

2π

5
sin

π

5
= −

(
2 cos2 π

5
− 1

)

(
2 cos2 π

5
− 1

)
cos

π

5
− 2

(
1 − cos2 π

5

)
cos

π

5
= −2 cos2 π

5
+ 1

4 cos3 π

5
+ 2 cos2 π

5
− 3 cos

π

5
− 1 = 0

(
cos

π

5
+ 1

) (
4 cos2 π

5
− 2 cos

π

5
− 1

)
= 0

4 cos2 π

5
− 2 cos

π

5
− 1 = 0

2 cos
π

5
= 1 + √

5

2

Method 2

cos
4π

5
= − cos

π

5[
2
(

2 cos2 π

5
− 1

)2 − 1

]
+ cos

π

5
= 0

8 cos4 π

5
− 8 cos2 π

5
+ cos

π

5
+ 1 = 0

(
2 cos2 π

5
+ cos

π

5
− 1

) (
4 cos2 π

5
− 2 cos

π

5
− 1

)
= 0

4 cos2 π

5
− 2 cos

π

5
− 1 = 0

The result is the same as that obtained in method 1.
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Fig. 10 Calculation of cosπ/5
by geometric methods

Method 3

In Fig. 10, �ABC ∼ �ABD

BC

AB
= AB

B D
; 1

w
= w

1 − w

w2 + w − 1 = 0; w =
√

5 − 1

2

λ = DB = 1 − w = 3 − √
5

2

cos
2π

5
=

1
2 AB

BC
=

1
2 B D

AB
=

√
5 − 1

4

− cos
π

5
= cos

4π

5
= 2 cos2 2π

5
− 1 = −

√
5 + 1

2

Appendix 5: Derivation of Eq. 26

For a cyclic conjugated polyene, the boundary (or periodic) condition is

cj = cN+j

(cN+ j )/c = sin[(N + j)θ + ω] = sin[(Nθ + ω)+ jθ ]
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= sin(Nθ + ω) cos jθ + sin jθ cos(Nθ + ω) (A66)

since cos(Nθ + ω) can be either positive or negative within the interval 0 to π , we
obtain

cos(Nθ + ω) = ±[1 − sin2(Nθ + ω)]1/2

= ±
[

1 − sin2
(

N
2mπ

N
+ ω

)]1/2

= ±(1 − sin2 ω)1/2

= ± cosω (A67)

By inserting Eq. A67 into Eq. A66, we obtain

(cN+ j )/c = sinω cos jθ ± sin jθ cosω (A68)

for the plus sign in Eq. A68, we obtain

(cN+ j )/c = sin[(N + j)θ + ω] = sinω cos jθ + sin jθ cosω

= sin( jθ + ω) = sin( jθ + ω) = c j (A69)

for the minus sign in Eq. A68, we obtain the identity transformation

(cN+ j )/c = sin[(N + j)θ + ω] = sinω cos jθ − sin jθ cosω

= sin(π − ω) cos jθ + sin jθ cos(π − ω)

= sin(π − ω + jθ) = sin( jθ + ω) = c j (A70)

Thus Eq. 26 is proven and Eq. A70 requires Eq. 27 to be satisfied.
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